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Abstract

The hemicube estimates of form factors are based on a finite set of sample directions.

We obtain several optimal arrangements of sample directions, which minimize the vari-

ance of these estimates. They are based on changing the size or shape of the pixels or the

shape of the hemicube, or using non-uniform pixel grids. The best reduces the variance by

43%.

The variance calculation is based on the assumption that the errors in the estimate are

caused by the projections of single polygon edges, and that the positions and orientations

of these edges are random. This replaces the infinite dimensional space of possible envi-

ronments by the two dimensional space of great circles on the unit sphere, making the

numerical variance minimization possible.
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Introduction

Radiosity algorithms for global illumination, either “gathering” [1,2] or “shooting” [3]

versions, depend on the calculation of form factors. It is possible to calculate the form fac-

tors analytically [1,4,5,6,7], but this is difficult when occlusion is involved, so sampling

methods are usually preferred. The necessary visibility information can be obtained by ray

tracing in the sampled directions. However, area coherence makes it more efficient to

project and scan-convert the scene onto a number of planes, for example, the faces of a

hemicube[2]. The hemicube faces have traditionally been divided into equal square pixels,
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but more general subdivisions are practical, and can reduce the variance of the form factor

estimates.

Sillion and Puech [8] used a single horizontal plane instead of a hemicube, and sug-

gested distributing the samples more densely in directions near the surface normal, in

order “to obtain regions with equal contributions to the form factor”. Reckeret al. [9] also

try to do this in a progressive radiosity context by using a higher resolution central region

on the single plane, and later shooting from the missed vertical sides of a short, wide

hemicube.

The main innovation here is a quantification of the effect of the distribution of sample

directions, which produces an optimization condition somewhat different than the “equal

contribution” one quoted above, due to area coherence effects. Optimization results in

several “recipes” for distributing the sample directions on the hemicube. The recipes are

resolution-independent. Given the numberK of hemicube pixel samples desired, the rec-

ipe produces an arrangement of close to, but no more than,K samples. The recipes were

tested on random input, and shown to be superior to one optimized for “equal contribu-

tions to the form factor”.

The optimization uses no knowledge about the specific input geometry, and instead

attempts to reduce the expected variance in the form factors for random input scenes. Thus

the recipes are not adaptive. They are fixed, independent of the input, and amenable to

hardware speedups.

Adaptive sampling is appropriate for ray tracing, since rays can be independently posi-

tioned at no extra cost. However a hemicube z-buffer algorithm taking advantage of area

coherence during scan conversion requires a fixed sampling pattern. The patterns pro-

posed here can all use efficient hardware or software scan conversion. The best uniform



grid approach, compatible with current hardware, is predicted to reduce the variance by

31%, compared with the standard hemicube. A non-uniform grid based on cubic polyno-

mials is predicted to reduce the variance by 43%, but requires either software scan conver-

sion or revised hardware microcode to perform an extra table lookup and multiplication

per pixel.

Since the optimization assumes random inputs, we must understand the probability

distribution on the space of scene geometries. With no limit on scene complexity, this

space is infinite dimensional, so simplifications are required. The key simplifying idea

here is that when surfaces are broken up into polygonal patches, and hemicubes are

rotated randomly about the surface normals to reduce form factor aliasing [10], the rela-

tionship of the patch edges to the hemicube becomes random. Random edges in 3D

project to random great circles on the unit sphereU of possible sample directions. The

principal errors in the form factor estimates can be directly related to the positions of these

great circles. This reduces the distribution of scene geometries to the much simpler two-

parameter distribution of random great circles onU, and makes the mathematical analysis

practical.

Form Factor Estimates

We briefly define form factors and describe hemicubes below, and then proceed to ana-

lyze the errors inherent in hemicube sampling, and how to minimize them. (Readers who

require motivation to traverse the mathematics should skip to the results section first.)

To obtain the form factor  between a finite areaAj and a differential areadAi,

one needs to calculate an integral [4],

, (1)
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whereV(dAi,dAj) is 1 if the differential areadAj is visible fromdAi, and 0 otherwise,r is

the length of the rayR from dAi to dAj, θi is the angle between the rayRand the normal to

dAi, andθj is the angle betweenR and the normal todAj. This integral is equivalent to

(2)

whereH is the hemisphere of unit direction vectorsω abovedAi, dω is the differential

solid angle on this hemisphere, andα(ω) is the angle between the directionω and the nor-

mal todAi , the same asθi in (1), andV′(ω,Aj) is 1 if the surface visible fromdAi in the

directionω is Aj, and is 0 otherwise. The integral (2) can be calculated analytically, using

exact visibility algorithms [4,5]. However it is usually estimated as a Riemann sum, by

dividing the hemisphereH into a number of disjoint regionsRk of solid angle∆ωk:

(3)

whereωk is a sample direction insideRk, usually at its center. A slightly more accurate

estimate is the weighted sum

(4)

where

.

The estimate (4) will be correct if the set whereV′(ω, Aj) = 1 aligns exactly with a collec-

tion of the regionsRk, while (3) may still be in error.

In the hemicube algorithm of Cohen and Greenberg [2], the regionsRk are the projec-

tions onto the unit hemisphereH of square pixels (also calledRk below) on the faces of a

FdAi Aj–
1
π
--- V′ ω Aj,( ) α ω( ) dωcos

H
∫=

F′dAi Aj–
1
π
--- V′ ωk Aj,( ) α ωk( ) ∆ωkcos

k
∑=

F″dAi Aj– V′ ωk Aj,( ) Wk
k
∑=

Wk
1
π
--- α ω( ) dωcos

Rk

∫=



half of a cubeC surroundingH, and the weightsWk correspond to the “∆ form factors”.

By scan converting the projections of all surfacesAj onto the faces ofC, using a Z-buffer

or another standard visibility algorithm, an “item buffer”B can be prepared, such thatB(k)

= j if and only ifV′(ωk , Aj) = 1. The  can then easily be obtained from the item

buffer as

(5)

Ray tracing algorithms [6] for calculating form factors can also be put into this frame-

work by taking theωk to be the sample ray directions, andRk to be the subset of the unit

sphere containing those directions closer to sampleωk than to any other sample direction.

Obviously, the accuracy of the estimate (4) depends on the number of samplesωk, and

their arrangement on the hemisphereH. For a given numberK of samples, our goal is to

find the best arrangement. Special attention will be paid to arrangements compatible with

hardware rendering engines, or with software scan conversion algorithms that take advan-

tage of object coherence.

Error Statistics

The difference between the integral (2) and its estimate as the sum (4) is the error

(6)

whereωk(ω) is the sample ray corresponding to the regionRk containing the directionω.

Any sampling method of estimating an integral like (2) is subject to error. The esti-

mate (4) comes from assuming that the polygon visible at the sample pointωk is actually

visible inside the whole regionRk. Thus it puts a jagged staircase edge following the
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hemicube pixel boundaries in place of the actual boundary edges of the visible regions,

causing aliasing.

Note that at this stage in a radiosity algorithm, our goal is not to reconstruct an image

of the scene from the point of view of the hemicube center. All we need is an accurate esti-

mate of the form factor . If a protrusion in a visible region making the estimate too

large is compensated by a nearby intrusion making it a compensating amount too small,

the estimate will still be correct. Since this cancellation does happen on average, our esti-

mate (4) is unbiased: if we repeat the calculation many times with randomly rotated

hemicubes, the average will approach the correct integral (2).

For hemicube rotation by a random angleθ, the expected value of a quantityh depend-

ing onθ is

.

The fact that  is unbiased means . In

spite of this, any one calculation will likely be in error. A measure of the range of this error

is the variance of , which is the expectation of its squared deviation from its

expected value, or . Our goal is to mini-

mize this variance, and thus reduce as much as possible the errors caused by aliasing.

Many variance reduction techniques have been suggested for ray tracing, such as

adaptive supersampling (Whitted [11]) and stratified sampling (Leeet al. [12]). However

our goal is a non-adaptive method suitable for hardware scan conversion into a z-buffer.

This offers a tremendous speedup from the area coherence in the scan conversion. In addi-

tion, a single scan through the item buffer can produce an estimate (5) for all possibleAj.
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Suppose the regionsAj are totally and randomly spread out, as in a Jackson Pollack

spatter painting, with paint drops smaller than the hemicube grid spacing, andAj corre-

sponding to the union of all spots of colorj. Then the only way to estimate the integral (2)

is by Monte Carlo sampling. The samples are uncorrelated, and the all have the same

probabilitypj of hitting a spot of colorj. The visibility functionV′(ω,Aj) also has the same

variancevj = pj - pj
2 at every sampleω, and a simple analysis shows that ifn samples are

taken, the variance of their mean visibility isvj / n = O(n-1).

In our case, however, the regions being sampled are polygons, which means that

nearby samples are correlated. I will show below that a regular pattern of samples can take

advantage of this fact, and produce a variance of order O(n-3/2), which is a significant

improvement over random sampling.

Another method for numerically estimating the integral (2) is Gauss integration. (See

Burnet [13], Zatz [14].) The integrand is evaluated at a number of specially placed Gauss

points alongAj, and the estimate is a weighted sum of the results. The Gauss points and

their weights are chosen to integrate exactly polynomials of up to a certain maximum

degree. The method thus works well on smooth functions that are approximated well by

polynomials. However the visibility functionV(dAi, Aj) changes discontinuously at occlu-

sion edges that hide parts ofAj from dAi, so Gauss integration cannot be expected to be

accurate. For similar reasons Simpson’s rule is not useful.

Calculation of variance

To computeEθ(D2) we start by rewritingD as a sum  where

. (7)

Then
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(8)

where the “error correlation” .

Instead of being fixed, suppose that a polygonal input scene is chosen from a distribu-

tion of possible inputs. Suppose thatAj is selected randomly from the patches in this

scene, thatdAi is chosen randomly from among the surface points at which form factors

are required, and, as above, that the hemicube is rotated randomly about the normal todAi.

Together these choices define a probability distributiondg on the spaceG of possible

geometry affecting the form factor  and its estimate .

If h is a function of geometryg, we will useE(h) without the subscriptθ to denote the

expected value

.

Now E(D2) is the expected variance for an arbitrary form factor for a geometry inG, and

this is what we will try to minimize.

Consider the visible projectionP(Aj) of Aj on the hemisphereH, i.e.,

. In the case of polygonal input,P(Aj) is bounded by projections of

straight line polygon edges, or projections of straight lines in which two polygons inter-

sect. Note thatDk in (7) is zero unlessRk is crossed by one of these boundary edges. For

random geometries,Dkl becomes smaller and smaller as the regions Rk andRl grow farther

apart, because it becomes less and less likely that both regions will be crossed by a bound-

ary edge. For fixedRk and fixeddr, the number of region samplesωl whose distance toωk

is betweenr andr + dr increases linearly withr, so many small termsDkl for distant pairs

of regions might still contribute substantially to the sum (8) forE(D2). However, detailed

Eθ D2( ) Dkl
l

∑
k
∑=

Dkl Eθ DkDl( )=
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E h( ) h g( ) gd
G
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analysis like that in the following sections shows that asr increases, the positive and neg-

ative contributions to the integral overG for Dkl, from edges of varying position and ori-

entation, cancel so as to makeDkl decrease rapidly enough that only neighboring regions

Rk andRl contribute significantly toE(D2). Therefore we are only interested in theDkl for

neighboring regions.

In addition,Rk andRl should be small compared to the size ofP(Aj), or the estimate (4)

will have a large relative error. The calculations below are for the limiting case where the

hemicube subdivision is fine compared to the projected size of the polygons. Under these

conditions it is reasonable to make our “first basic assumption”, that at most a single edge

L of P(Aj) crossesRk or Rl, since other situations will contribute insignificantly to the vari-

ance.

 If the distributiondg of geometries is random, the 3-D edge corresponding toL will

be a random line in space, soL will be a random great circle on the hemisphereH. Thus

our “second basic assumption” is to replace the integration overG in E(D2) by integration

over the spaceSof great circles. This space can be parametrized by the unit normal to the

plane of the great circle, the one which points to the side containing the polygonAj. The

probability measure of a collection of great circles is then proportional to the area on the

unit sphere occupied by the corresponding normals.

We have seen above that only termsDkl for neighboring pairs of regions crossed by the

same edge ofP(Aj) contribute significantly toE(D2). When the hemicube grid is fine, the

number of these pairs is proportional to the total boundary edge length ofP(Aj). Thus the

effect of this second assumption is to multiply the varianceE(D2) by the ratio of the length

of a complete great circle to the sum of the lengths of the great circle arcs boundingP(Aj).

A distribution of samples which is optimal for random great circles will also be optimal

for random polygons. This makes it possible to account for the randomness in the position



and orientation of the polygons, without worrying about the distribution of their sizes. We

will quote our variance values for the single great circle case.

The assumption of random orientation may not be appropriate for architectural simula-

tions, where the edges are preferentially oriented along three perpendicular axes. Random-

ness can be partially restored by rotating the hemicube, randomly around the surface

normal, as suggested by Wallaceet al. [10]. This will randomize the edges which are not

parallel to the surface normal, but only the partially randomize edges which are parallel to

it. In the “Future work” section, I suggest how to modify the analysis for this case.

Note that if  is replaced by a function which is linear acrossRk, the devia-

tions from the value at a region center are symmetric, and cancel out in the integral (7) for

Dk, so the main source of variance still comes from projected edges. This makes our anal-

ysis applicable to the linear finite elements in Max and Allison [15], the piecewise linear

cases of the more general finite element formulations in Troutman and Max [16], Zatz

[14], and Gortleret al. [17], and to the final light-gathering pass in Cohen and Greenberg

[2]. In the work of Chenet al. [18], the final gathering is done once per output pixel, so the

variance results in noise in the final rendering, which can also be reduced by optimal sam-

pling.

In finite element applications, the point collocation method corresponds to the finite-

area-to-differential-area form factors , which can be found using hemicubes,

while the more popular Galerkin method corresponds to the finite-area-to-finite-area form

factors , which involve integrals over four real variables. Troutman and Max [16]

found that the point collocation method converged faster than the Galerkin method, even

when the hemicube sampling was done in software. The 4D integrals for the Galerkin

method are usually done by Gauss integration, but as discussed above, this calculation

may be inaccurate due to the effect of discontinuities. A hybrid integration method could

V′ ω Aj,( )

FdAi Aj–

FAi Aj–



place hemicubes at the Gauss pointsdAi of Ai, and use 2D Gauss integration only overAi.

In general occlusion situations,  is aC2 function of the position ofdAi, with lower

order continuity coming only from degenerate situations when edges are parallel or touch

(Paul Heckbert, personal communications), so 2D Gauss integration should perform better

overAi. As shown in Max and Allison [15], the color channels in a hardware pipeline can

be used to help integrate all the piecewise linear basis functions in one pass over a hemic-

ube atdAi.

Variance from a central rectangular pixel

We will calculate theDkl for regions on the planeT of the top hemicube face, tangent

to H at the north poleO, because polygon edges project to straight lines onT, rather than

to great circles. We will replace the space S of great circles by the simpler spaceQ of all

oriented linesL, randomly positioned in the planeT. In the following section, we will

show how to compensate for the resulting distortion in the distribution of random lines.

For now, we will consider only regions close to the pointO of tangency betweenT andH,

where this distortion is minimal.

We will start by analyzing the varianceDkk contributed by a single rectangular pixel

Rk, whose center isO. The rectangleRk, shown in figure 1, has width 2a and height 2b,

and is bounded by the edgesx = a, x = - a, y = b,andy = - b. The spaceQ of lines will be

parametrized by the lengthl of the segmentOG from O perpendicular toL, and the angle

θ between this segment and theX axis. The lineL(θ, l) is oriented so thatV′(ω, Aj) is 1 on

its right side, and 0 on its left. The parameterl is positive ifO is to the left of the directed

line L, the case shown in figure 1, and negative otherwise. For now, bothθ andl have uni-

form distributions. Rewriting (8) forl= k,

(9)

FdAi Aj–

Dkk E
1
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At the north pole, cosα = 1, and the solid angledω is equivalent to the areadx dy.

ThusDkk is well approximated by

(10)

where

(11)

and  is 1 on the right side ofL(θ, l), and 0 on the left.

The spaceSof great circles is finite, but the range ofl in (10) is infinite, so the spaceQ

is infinite, and the areadθ dl cannot be normalized into a probability distribution. We will

fix this later when we correct for the area shrinkage in the mapping fromQ to S, but for

now, note thatD(θ, l) is 0 wheneverl is large enough so that the line does not cross the

rectangleRk.

Note that addingπ to θ and reversing the sign ofl putsL(θ, l) back in the same place,

with its orientation reversed. Since lineL is oriented to make the interior ofP(Aj) lie to its

right, this replacesV″ by 1 - V″ and changes the sign ofD(θ, l), but does not change its

square. Similarly, reflecting figure 1 in theX or Y axis leaves (D(θ, l))2 unchanged. Thus

(12)

so it is sufficient to computeD(θ, l) for θ in the first quadrant, andl positive, so that the

line L is oriented as in figure 1, andV″(0, 0) = 0. The equation of the lineL(θ, l) is

(13)

Ekk
1
π2
----- dθ dl D θ l,( )( ) 2

∞–

∞

∫
0

2π

∫=

D θ l,( ) dx dy V″ x y,( ) V″ 0 0,( )–{ }
b–

b

∫
a–

a

∫=

V″ x y,( )

Ekk
8
π2
----- dθ dl D θ l,( )( ) 2

0

∞

∫
0

π 2⁄

∫=

e x y,( ) x θcos y θ l–sin+ 0= =



and with the orientation in figure 1,V″(x, y) = 1 if and only ife(x, y) ≥ 0. The maximum

value ofl giving a non-zeroD(θ, l), for θ in the first quadrant, is at

(14)

where the cornerB = (a, b) satisfies (13). Forl > l 1(θ), the lineL missesRk.

There are two other special cases for the intersection topology ofL with Rk. When the

line L passes through the cornerA = (- a, b), l is at

(15)

and whenL passes throughD= (a, - b), l is at

(16)

Note that (15) gives a positive l2(θ) only whenθ > θ3 = tan-1(a/b), and (16) gives a posi-

tive l3(θ) only whenθ < θ3 .

 The three “general position” cases for the intersection ofL with Rk are shown in fig-

ures 1, 2, and 3, and their (θ, l) ranges are shown in figure 4. The situation in figure 1, or in

the limiting special cases for which the same area formulas hold, occurs when

max(l2, l3) ≤ l ≤ l1. In this case,D(θ, l) = D1(θ, l), the area of the triangleEBF where

V″(x, y) = 1. In figure 1,BS = l1 - l, EB = BS / cosθ, andFB = BS/ sinθ, so

.

Case 2, shown in figure 2, occurs whenθ ≥ θ3 and 0≤ l ≤ l2(θ) . In this case,

D(θ, l) = D2(θ, l), the area of the trapezoidEABF,with base AB and average heightUT.

The distanceOT is l / sinθ soUT = OU - OT = b - l / sinθ, and

l1 θ( ) a θcos b θsin+=

l2 θ( ) a θcos– b θsin+=

l3 θ( ) a θcos b θsin–=

D1 θ l,( ) 1
2
---EB FB⋅

l1 l–( ) 2

2 θ θsincos
--------------------------= =



.

Case 3, shown in figure 3, occurs whenθ ≤ θ3 and 0≤ l ≤ l3(θ). Case 2 can be trans-

formed into case 3 by reflection in the 45° line x = y, which swapsa andb, and also swaps

cosθ and sinθ, so

.

I used Mathematica to integrate (D(θ, l))2, first in l and then inθ, using the different

formulas above for the different regions shown in figure 4. For fixedθ ≤ θ3 ,

(17)

and forθ ≥ θ3 ,

(18)

so that by (12),
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When  and  are substituted into this expression, it

reduces to

.

Variance for a general rectangular pixel

The previous section computed the approximationEkk to Dkk for a rectangular pixelRk

with center at the north poleO. If ithe center is at a general point (x0, y0, 1) on the top face

T of the hemicube, there are two modifications required. First of all, the factor cosα(ω)

dω in (9) is no longer equivalent todx dy. Instead, by a standard formula from [2] or [4],

(19)

We will assume that the pixelRk is small enough so that the denominator of (19) can be

evaluated at the pixel center (x0, y0) instead of at (x, y).
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 Our basic assumptions involve a probability distribution on the spaceS of great cir-

cles, and our second modification is to account for the mapN which takes a lineL in the

spaceQ of lines onT to its corresponding great circle inS. Let J(x, y, θ, l) be the Jacobian

“area stretching” determinant for this map. Then in analogy to (9) and (10)

(20)

where

(21)

andD(θ, l) is defined in (11). The factor of  in (20) arises because a probability distribu-

tion must integrate to 1, while the solid angle measure for sets of normals inSintegrates to

4π.

To computeJ(x, y, θ, l), let U(θ, l) be the plane throughL(θ, l) and (0, 0, 0), and let

N(θ, l) be its normal. A differential rectangle inQ with sidesdθ anddl, and areadA =

dθ dl is mapped to a differential parallelogram inS with sides  and , and area

so

.

To proceed farther, we need a formula forN(θ, l) in terms ofx, y,θ, andl. The plane

U(θ, l) contains the vectorV1 = (x + l cosθ, y + l sinθ, 1) from (0, 0, 0) to the pointG in

Dkk
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figure 1, and also the vectorV2 = (- sinθ, cosθ, 0) in the direction of the arrow onL in fig-

ure 1. The right hand rule matches our orientation conventions, so

Then some standard calculus, algebra, and trigonometry can be used to derive

.

We will assume the pixels are small enough so that in the integral (21),l must be very

small forD(θ, l) to be non-zero, and soJ(x, y, θ, l) can be replaced byJ(x, y, θ, 0). Once

this is done, the same rotation and reflection symmetries apply as in (12), so, using (17)

and (18),

.
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For a pixelRkk of the same shape with center (1,y0, z0) on a side face of the hemicube,

the formulas in [2] and [4] give

so

.

Correlation between pixel errors.

So far we have only considered the varianceDkk for a single pixelRk. There are corre-

lationsDkl between the errors on pairs of different pixelsRk andRl which also contribute

to the total form factor variance. To analyze these correlations, we again start with the case

that both pixels are near the north pole ofH, so that we can integrate with respect to area

on the top hemicube faceT.

Figure 5 shows two horizontally adjacent pixels, of width 2a and height 2b, Rk on the

left, with centerI = (- a, 0), andRl on the right, with centerJ = (a, 0). The originO = (0, 0)

is at the midpoint of the common sideNF of the two pixels. Also shown is the lineL(θ, l)

defined as in figure 1. Figures 5 through 9 show the five “general position” cases, which

we will name by these figure numbers. Note that sinceF, J, andC lie on a straight line, if

L intersects the interiors of segmentsOF andNC, the pointJ must lie aboveL, as shown in

figure 5. Figures 5 through 9 have the same rotation and reflection symmetries as figure 1,

so we again need only consider 0≤ θ ≤ π/2 andl ≥ 0. (Note that the reversal of the orienta-

tion of L(θ, l) changes the sign of bothDk andDl, but not their product.)

α ω( ) dωcos z dy dz⋅ ⋅
1 y2 z2+ +( ) 2

-----------------------------------=

Dkk

z0
2F y0 z0,( )

4π 1 y0
2 z0

2+ +( ) 4
------------------------------------------=



Figure 10 shows the regions in (θ, l) space corresponding to these cases, separated by

the curves

m0(θ) = a cosθ

m 1(θ) = 2a cosθ - b sin θ

m2(θ) = b sin θ

m3(θ) = b sin θ - 2a cosθ

at which the lineL(θ, l), with equationl = x cosθ + y sinθ, passes through the pointsJ, C,

F, andA respectively. Keyθ values where these curves intersect are also shown:

θ3 = arctan(a/b)

θ4 = arctan(2a/b)

and

θ5 = arctan(3a/b).

Let

and

F1 dx dy V″ x y,( ) V″ I( )–{ }
b–

b

∫
2a–

0

∫=

F2 dx dy V″ x y,( ) V″ J( )–{ }
b–

b

∫
0

2a
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whereI = (-a, 0) andJ = (a, 0) are the centers ofRk andRl, respectively, as shown in figure

5. Then for cases 5, 6, and 7,F1 is the area of triangleEFG, which works out to be

,

and for cases 8 and 9,F1 is the area of trapezoidAFGK,

.

Also, for case 5,F2 is the negative of the area of triangleGMN,

,

for cases 6 and 8,F2 is the negative of the area of trapezoidGHCN,

,

and for cases 7 and 9,F2 is the area of trapezoidFBHG,

.

The corresponding formulas forDi(θ, l) = F1 F2 , the product of the errors on pixelsRk

andRl for casei, are

,

,

F1
b θsin l–( ) 2
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-------------------------------=
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---------------------------------------------------------=
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--------------------------------------------------------------------------------------–=



,

,

and

.

Let

.

where I is chosen according to the arrangement of cases shown in figure 10. ThenG(θ) is

 0 ≤ θ ≤ θ3,

θ3 ≤ θ ≤ θ4,

θ4 ≤ θ ≤ θ5,
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 θ5 ≤ θ ≤ π/2.

Note thatD5(θ, l) throughD9(θ, l), when written with a common denominator

cos2θsin2θ, all have numerators whose terms are of total degree 4 in the variablesacosθ,

bsinθ, andl. The functionsm0(θ) throughm3(θ) used as limits of integration are also lin-

ear combinations ofacosθ andbsinθ. Integration bydl raises the power ofl by 1, so the

functionG(θ) has numerator terms of total degree 5 and can be represented as

(22)

where the coefficientscn differ in each of the θ ranges listed above. Each of the terms can

be integrated inθ in closed form, but the results will not be used here, because they apply

only to pixels very close to the north pole ofH. For a general pair of pixels onT, we must

compute

,

and for a pair of pixels on a side face,

.

The case of two pixels sharing a horizontal edge instead of a vertical one is found from the

case above by reflection in The 45° line x = y, as discussed for figure 3.

The case of two diagonally adjacent pixels is similar. Figure 11 shows two pixels of

width 2a and height 2b, touching at the originO. The corresponding error integrals are
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∫ D9 θ l,( ) dl
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m3 θ( )
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and

whereI = (-a, b) andJ = (a, -b). The five “general position” cases are shown as the lines

L12, L13, L14, L15, andL16 in figure 11. Figure 12 shows the regions in (l, θ) space where

each of these cases apply. These regions are separated by the curves

and

,

defining lines which pass respectively through the pointsA, B, E, F, I,andJ of figure 11.

These curves intersect at theθ valuesθ1 throughθ5, with

θ1 = arctan(a/3b),

F1 dx dy V″ x y,( ) V″ I( )–{ }
0

2b

∫
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0
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θ2 = arctan(a/2b),

andθ3, θ4, andθ5 as defined previously. As before, the integralsF1 andF2 can be found as

areas of triangles and trapezoids. The productF1 F2 can again be integrated with respect

to l for fixedθ, according to the regions in figure 12 crossed by the vertical line atθ. The

result is a separate formulaG(θ) of the form of (22) for each of the six intervals [θi, θi+ 1],

whereθ0 = 0 andθ6 =  π/2. Then

.

Here there is only a factor of 4 in the numerator, because the reflections in thex andy axes

are no longer symmetries of figure 11, only their product, a 180° rotation, is. However, the

integral still extends only to π/2, since forπ/2 ≤ θ ≤ π, the lineL(θ, l) intersects only one

of the pixelsRk or Rl, so one of the terms in the productF1 F2 is zero. An analogous for-

mula holds for pixels on the side faces of the hemicube.

One can apply a similar analysis to pairs of pixels which are further apart, but I have

not done so, because the contributions from the correlationsDkl for the 8 neighborsRl sur-

rounding pixelRk already total less than 1% of the varianceDkk , and pixels farther apart

will have even less correlation. In addition, if the separation between two pixels becomes

too large, it may no longer be correct to assume that at most one polygon edge crosses

between them, and that it does not have to be extended beyond its endpoints in order to

intersect them. Nevertheless, geometric arguments like the ones above show that for any

pair of nearby pixelsRk andRl onT, the error correlation Dkl can be approximated by

Dkl
4

4π3 1 x2 y2+ +( ) 4
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------------------------------------------------------
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wherem is a configuration index depending on the relative position of pixelsRk andRl , x

andy are the coordinates of the point halfway between the pixel centers, and the division

pointsθj depend only on the ratio ofa andb. The coefficientscjmn arise from integrals of

D(θ, l) with respect tol, which were performed symbolically by Mathematica.

We will assume that the two pixels are close enough together so that the denominators

can be evaluated at the center of pixelRk , instead of at the midpointO between them.

Then we can group all terms Dkl (but notDlk) for a fixedk, to get

(23)

wherer = b/a and . Analogous formulas hold for pixels on the side faces of

the hemicube.

If we calculate the total error variance from the hemicube sampling by summing these

termsWk for all pixelsRk, we will neglect error correlations between nearby pixels on

adjacent faces, and include correlations for certain potential neighbors which are actually

beyond the edges of faces. However for increasing hemicube resolution, these “edge

effects” become small.

Face variance as a Riemann integral

Suppose the top faceT of the hemicube is divided into 2M square pixels of side 2a =

2b = 1/M, so thatr = 1. Then the sum of (23) over these pixels can be rewritten as

Wk Dkl
l

∑ a5
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wherexl =  andym = . If we replace the (2a) (2a) by ∆x ∆y this becomes

(24)

where

.

The double sum in (24) is a Riemann sum for a double integral, so whenM approaches

infinity in the limit of fine hemicube subdivision, the sum approaches the integral

,

which is independent of the resolution of the hemicube.

The expressione(x, y) is too complicated to be integrated analytically, so a sum is still

required to estimate the integral. However, Simpson’s rule can be used, which gives a

more accurate estimate than the Riemann sum (24). Note that because of the symmetry of

the square,T can be computed from the integral over a fundamental triangle

,
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requiring fewer terms in the Simpson’s rule sum. Similarly, the contribution from the four

side faces isDsides= a3S, where

and

.

Optimization

Suppose we have a fixed numberK of pixels, which are to be distributed over the top

and sides of a hemicube. Even if all the pixels are square, we can use different resolutions

for the top and the sides. So suppose we divide the top face into 2M by 2M pixels, with

a = 1/(2M), and each of the four side faces into 2N by N pixels, witha = 1/(2N). Then

.

Let  and  be real-valued proxies forM andN, which we will

use to apply calculus to the variance minimization. The constraint on total pixels becomes

,

and we can write the total variance ofD as

.
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Let t = v2 so thatv = t1/2 andu = (1-2t)1/2. Then we must minimize

Setting the derivative equal to zero, we get

.

Solving fort, one finds

.

Using thist and the definitions ofu, v,and t, we can find the integer resolutions

(25)

and

, (26)

 where the “=” signs imply truncation of the fractional part. With these minimizingt, u,

andv, the total variance reduces, after some algebraic manipulation, to

.

SinceS andT are constant, this is proportional toK -3/2. As discussed above, the variance

of the mean ofK independent measurements decreases only asK -1. The improvement in

convergence here comes because the measurements are locally correlated, and the regular

sampling takes advantage of this correlation, in a way that random samples cannot.
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We now investigate several ways of improving this optimum if the scan conversion

onto the hemicube can be more flexible. The first is to replace the cube by a rectangular

solid. Because of the four-fold symmetry in the horizontal plane, the horizontal cross-

section will still be a square of side 2, but the vertical heighth can be different than 1. In

order to apply the previous analysis to the top face, we project it onto the horizontal plane

tangent to the unit sphere, getting a square of half-widths= 1/h. Let K, M, N, u, v,andt be

as before, except that the side faces are nowhN pixels high. We can then repeat the above

analysis for square pixels, using

and

.

The reason for thes3 factor in front of the integral forTh is that the half-width of each

pixel becomess/(2M). The total pixel count is now

so the constraint equation inu andv becomes

and (25) must be replaced by

 .
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with value

.

The next generalization is to use non-square pixels. Most scan-conversion hardware

can deal with rectangular pixels by adjusting the 4 by 4 viewing projection matrix, as long

as all the rectangles are identical, and are arranged in a lattice. By four-fold symmetry, the

optimal lattice on the top must still be a square one, but on the four sides, the optimal lat-

tice is truly rectangular. Letr be the ratio of the height to the width of the rectangular pix-

els in the four sides. Again takeK, M, N, u, v,andt as before, except that the side faces are

nowhN/r rectangular pixels high. Then we modify the formula forSh to

where, includingr as in (23),

.

The extra factor of 1/r in front of the integral forShr arises because the∆z in the Riemann

sum needs to ber/N instead of 1/N. The new constraint equation becomes

.

The minimum variance is at
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with value

.

Appendix A describes hemicubes with uneven pixel grid spacing, specified by low

degree polynomials, and Appendix B describes how to modify the standard scan conver-

sion algorithm to accommodate such uneven grids.

Results

The total variance was minimized in each of the cases described above, using an

unconstrained optimizer written by David Gay [19]. It had to estimate the gradient of the

variance by finite differences, since it was impossible to differentiate the variance analyti-

cally with respect to the pixel and hemicube size and shape parameters.The variance

depends on the the scene geometry and the numberK of pixels used, so I will express the

results as a ratio of the optimum variance obtained to the variance from a standard hemic-

ube of sides 2 x 2 x 1, with the same numberK of equal square pixels. This base case is

line 1 in table 1, which presents the other cases in the order discussed below.

The first optimization was for a standard 2 x 2 x 1 hemicube with square pixels, but

allowing more smaller pixels on the top than on the sides. The optimal value oft to use in

(25) and (26) is .238126, and the variance ratio is .75809. The next optimization was to

allow the side faces of the hemicube to have height different than 1, but still have square

pixels. In this case the optimal heighth of the sides was 1.41647, and the optimumt was

.232992, giving a variance ratio of .68614. Note that the side faces are now 2N by hN pix-

t
Shr
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els, whereN is determined from (26). This optimum made the hemicube taller than half a

cube, the opposite distortion to that in Reckeret al. [9], whose goal was good early

approximations in progressive radiosity.

If in addition the sides were allowed to have identical rectangular pixels, the optimum

ratio r of the height to the width of these rectangles was 1.0959, the hemicube heighth

was 1.42054, the value oft was .255042, and the variance ratio was .68554. Now the side

faces arehN/r pixels high, and (25) must be modified accordingly.

Table 1: Hemicube parameters. The rows are 1) standard hemicube, 2) unequal resolutions on the
top and side, 3) 2x2xh hemicube, 4) 2x2xh hemicube with rectangular pixels, 5) uneven quadratic
spacing, 6) quadratic spacing with variable r, 7) uneven cubic spacing, 8) uneven cubic spacing
with variabler, and 9) uneven cubic spacing optimizing equal contribution to the form factor.

For the case of uneven spacing described in Appendix A, I tried quadratic and cubic

polynomials on the top and the side faces. For example, the cubic polynomials have 7

variance
ratio t r x(u) y(u) z(v)

1 1.0 0.333333 1.0 u u v

2 0.75809 0.238126 1.0 u u v

3 0.68614 0.232992 1.0 0.70598u u 1.41647v

4 0.68554 0.255042 1.09590 0.70396u u 1.42054v

5 0.60711 0.271831 1.0 0.56563u +

0.33410u2

0.60746u +

0.39254u2

1.23056v -

0.11911v2

6 0.60583 0.245522 0.85616 0.55342u +

0.29327u2

0.61429u +

0.38572u2

1.26946v -

0.08839v2

7 0.56897 0.270982 1.0 0.69628u -

0.15892u2 +

0.35680u3

0.76101u -

0.17971u2 +

0.41870u3

1.69337v -

1.44387v2 +

0.86886v3

8 0.56884 0.248993 0.81477 0.62711u -

0.09508u2 +

0.24086u3

0.76554u -

0.16232u2 +

0.39678u3

1.86719v -

1.67351v2 +

1.10017v3

9 0.62488 0.17545 1.0 0.95310u -

0.83551u2 +

1.34289u3

0.74430u -

0.34758u2 +

0.60328u3

1.37418v -

1.28992v2 +

0.60044v3



independent parameters:a1, a2, a3, b1, b2, c1, andc2. The sizes of the top is determined by

(28)in Appendix A, and thenb3 andc3 are determined from (29) and (30) respectively,

usingh = 1/s. For the top face the optimum polynomial was

,

and for the side faces, the optimum polynomials were

and

.

The value oft was .270982, and the variance ratio was .56897. Note that (30) assures that

the sides have the correct heighth even when thev range [0, 1] is divided intoN equal

parts.

To allow flexibility in the ratio of the vertical to horizontal pixel counts on the side

faces, suppose that there areN/r vertical subdivisions of thev interval [0, 1], with the

usual 2N subdivisions of theu interval [-1, 1]. Thenr becomes an eighth variable in the

minimization. Its optimal value is .814768, and the optimal polynomials are shown on row

8 of table 1. The value oft is .248993, and the variance ratio is .56884, a 43% improve-

ment over the standard hemicube with square pixels, all of the same size. Note that a 31%

improvement, or three quarters of the 43% above, can be achieved just by changing the

shape and relative resolution of the top and sides of the hemicube, which is easy using cur-

rent hardware.

Note also in table 1 that the variance improvements on lines 4, 6, and 8, from lettingr

be different from 1, are all insignificant. Figure 13 shows the hemicubes resulting from the

x u( ) 0.696285u 0.158924u2 0.356801u3+–=

y u( ) 0.761007u 0.179706u2– 0.418699u3+=

z v( ) 1.69337v 1.44387v2– 0.868916v3+=



cases in rows 2, 3, 5, and 7 of table 1. The first column shows the top face, in the size it

would appear when projected onto the plane z = 1. The second column shows a side face.

The last column shows the assembled hemi-solid, with the top face expanded to size 2 x 2.

The number K of pixels allowed was set to 1000. The second row used 940 pixels, and the

other three rows used 996.

Verification

To verify the performance of the proposed hemicube schemes, two independent tests

were performed. These tests are reported in greater detail in Max and Troutman [20],

which also describes a test on a “Cornell Room”. The first used 10,000 random triangles in

each of the cases in figure 13, and computed the form factors within the finite element

radiosity system used to produce figure 6 of [20]. For the standard hemicube, used as ref-

erence for the variance ratios, 40,000 triangles were used. The specified pixel countsK

were from 25,000 to 50,000 increasing in steps of 5000. The random number generator

was seeded from the clock, so that different triangles were generated for each test.

The second test used 20,000 random triangles for each case, in an independently coded

program for computing form factors only. The specified pixel counts were from 3888 to

1,920,000 in 9 doubling steps, so that the final count corresponded to a 800 x 800 x 400

resolution hemicube. The random number generator was reinitialized for each case and

resolution, so that the same random triangles were used.

Table 2 shows the results of the two tests. The row numbers correspond to those in

table 1. The last two columns give the slopes of the least squares fit lines. In order to get a

single number for the variance ratios reported in the middle two columns, the data for each

case was fit with an enforced slope of -1.5, and the variance ratio reported is the antilog of

the difference in the y-intercepts between the listed and standard cases. The slopes for test



2 are close to the predicted value of -1.5, and the variance ratios for both tests are also

close to those predicted, but a little larger in all cases.

Table 2. Performance test results. Rows are numbered as in table 1.

One of the anonymous TVCG reviewers requested a comparison with the “equal con-

tribution to the form factor” method of Sillion and Puech [8]. To do this, I minimized the

mean square deviation of the pixel form factors from the mean pixel form factor, using

cubic polynomial spacing as on line 7 of table 1. The extra degree of freedomr on line 8,

affecting the pixel shape on the side faces, has no meaning here, since the form factor for a

small region depends only on its size, and not on its shape. By the methods described

above, the summed square deviation was interpreted as a Riemann integral, accurately

approximated by Simpson’s rule, and minimized with respect to the independent cubic

polynomial coefficients.

The resulting cubic polynomials are given in row 9 of table 1. The optimal hemicube

was short and wide, as shown in figure 14, with a heighth of only 0.68471, and at value of

0.17545. The predicted improvement was 37.5%, not as good as the 43% in lines 7 and 8.

This inferior performance for the same degrees of freedom verifies that the optimization

criterion used in this paper gives better performance than the “equal contribution to the

type

predicted
variance
ratio

test 1
variance
ratio

test 2
variance
ratio test 1 slope test 2 slope

1. standard 1.0 1.0 1.0 -1.47268 -1.52282

2. unequal 0.75809 0.78449 0.79526 -1.37623 -1.51190

3. rectangular 0.68614 0.72077 0.69620 -1.42348 -1.51731

5. quadratic 0.60711 0.66302 0.64671 -1.37450 -1.50050

7. cubic 0.56897 0.64006 0.58415 -1.42543 -1.51604

9. equal FFs 0.62488 0.63435 -1.52964



form factor” criterion. However the larger negative slope in the last column means that

this method caught up to the one in row 7 at high hemicube resolution.

Future work

The “second basic assumption,” about randomness of edges, does not apply to archi-

tectural scenes, where edges and surface normals are directed preferentially along thex, y,

andz axes. It is then essential to rotate the hemicube around its “vertical” axis, in order to

avoid positive error correlation in whole rows and columns of pixels along projected

edges. Once this is done, the two families of “horizontal” edges become randomized.

The vertical edges parallel to the normal remain vertical, with their projection planes

all passing through the north poleO of the hemicube. On the top face of the hemicube,

such edges project to lines radiating fromO. Therefore they result in linesL(θ, l) crossing

a pixel at (x, y) with θ = tan-1 (y/x). We already know how to compute the variance from

such lines, so we can just skip the step of integrating overθ, to get a special variance for

them. Similarly, their projections on the side faces are all vertical, so it is easy to get a spe-

cial variance for the sides, which must now include the correlation between distant pixels

in the column containing the edge, leading to a large positive correlationWk in equation

(23). Then we can use a weighted sum of the usual and special variances, to account for

the proportion of edges parallel to the normal. For example, if all object edges are axis-

aligned, an expected 1/3 of them will be vertical.

If this combined variance were minimized, an optimal hemicube could be designed for

this special distribution of geometries. I suspect it would have a wider top, and shorter

sides with higher horizontal resolution, corresponding to h < 1 andr > 1 in the notation

here, in order to minimize the large error correlation discussed above. It would be better to

use a rotated coordinate grid on the side faces, to break up this correlation.



Various authors, for example Beran-Koehn and Pavicic [21], have proposed using

faces tilted at different angles, and perhaps a different number of them. It should also be

possible to optimize over face orientation angles as well as face grids.

Peter Shirley has suggested that for shooting methods of progressive radiosity, the

variance in radiosity from one shot is proportional to the form factor variance times the

“unshot power”, so one can also use this analysis to dynamically change the numberK of

total samples based on the power to be shot. More generally, for ray traced samples, there

need be no pattern compatible with scan-conversion, so all the sample directions could be

independent parameters to optimize. However, this could result in a huge number of vari-

ables. In addition, the region corresponding to a ray would become the Voronois spherical

polygon of directions closer to that ray than to any other, which would greatly complicate

the geometrical analysis.

Dippe and Wold [22] propose using hexagonal grids, where each pixel is surrounded

by six neighbors instead of four. Uniform hexagonal lattices are compatible with scan-

conversion hardware, using a shearing viewing transformation to take them to a standard

square lattice. I tested hexagonal versions of each of the cases in table 2, using the same

parameters as in table 1, and the same 20,000 triangles described in test 2 above, and

found no improvement in the variance. Hexagonal grids may be superior for image recon-

struction from samples, as suggested by their fourier transforms, but do not seem to be

better for estimating form factors. The mathematical analysis in this paper could be

repeated for hexagonal grids, to help resolve this question.
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Appendix A: Uneven grids

A final generalization is to allow unevenly spaced pixels, which are impossible for

most scan-conversion hardware. However, if rectangular pixels are arranged in straight

rectilinear rows and columns, Appendix B shows how to modify software scan-conversion



routines to deal with uneven row and column spacing, while still taking advantage of area

coherence. (Presumably microcode or hardware could also be so modified.)

In order to define the uneven spacing by a few parameters which are independent of

the resolution, we use polynomials of degreedeg, so that the parameters are the coeffi-

cients. Supposeu andv are variables which range from -1 to 1, and are to be divided

evenly, so that, for exampleul = (l + .5)/M. On the top face, by symmetry, the optimal

spacing inx andy will be the same, so they are defined by identical polynomials

and

 ,

for positive u and v, extended for negativeu and v to become odd functions,i.e.,

x(-u) = - x(u). The pixel with index (l, m) extends inx from x(l/M) to x((l+1)/M), so it has

width approximately∆x = x′((l+.5)/M)/M and height∆y = y′((m+.5)/M)/M, with the

primes denoting differentiation with respect to u or v. Then the formula forDtop becomes

(27)

where

In the limit for largeM, the Riemann sum (27) approaches
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as before. Note that the half-width sof the top face is now

 . (28)

A similar calculation holds for the side faces, but now there is no symmetry iny andz

so there are two different polynomials

and

 .

Of the deg coefficients in each of these two polynomials, onlydeg - 1 are independent

parameters to optimize, becausey(1) = 1, so

(29)

andz(1) = h = 1/s, the height of the side faces, so

 . (30)
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Appendix B: Scan conversion for uneven pixel spacing

To use the polynomials, the usual scan conversion algorithm must be modified for the

uneven pixel spacing. For one face of the hemicube, letx(i) andy(j) be the tabulated col-

umn and row spacing for the pixel centers, and also tabulate∆x(i) = x(i+1) - x(i) and∆y(i)

= y(i+1) - y(i). Subroutines are required for calculatingfirsti (x) = min{i | x(i) ≥ x} and

firstj (y) = min{j | y(j) ≥ y}. For quadratic polynomials, they can be implemented using

the quadratic formula. For more general spacing, estimatefirsti  from a table for the

inverse function ofx(i), and then verify and possibly adjust it using the table forx(i).

Place the edges of the polygon in y-buckets, based onfirstj  of their minimum end-

pointy. Then simplified pseudo-code for scan conversion in increasingy is:

For j = 0 to jmax do

Insert edges from y-bucket(j) into x-sorted list

While x-sorted list is non-empty

Remove a pair of edges (edgel,edger)

dz = (edger.z - edgel.z) / (edger.x - edgel.x)

il = firsti(edgel.x)

ir = firsti(edger.x)

z = (il - edgel.x)*dz

For i = il to ir-1 do

If z is closer than zbuffer(i,j)

zbuffer(i,j) = z

itembuffer(i,j) = polygonID

z = z + dz* ∆x(i)

For all edges in x-sorted list

If edge ends on current scan line, remove it

else update edge.x and edge.z using ∆y(j).



Compared to the standard algorithm, the innermost loop requires an extra table access

for ∆x(i), and one extra multiplication by∆x(i).

Figure Captions

Fig. 1: Geometry when max(l2,l3) ≤ l ≤ l1.

Fig. 2: Geometry whenθ ≥ θ3 and 0≤ l ≤ l2(θ).

Fig. 3: Geometry whenθ ≤ θ3 and 0≤ l ≤ l3(θ).

Fig. 4: The (θ, l) ranges for cases 1, 2, and 3.

Fig. 5: Case 5.

Fig. 6: Case 6.

Fig. 7: Case 7.

Fig 8: Case 8.

Fig 9: Case 9.

Fig. 10: The (θ, l) ranges for cases 5 through 9.

Fig. 11: Lines in cases 12 through 16.

Fig. 12: The (θ, l) ranges for cases 12 through 16.

Fig. 13: Grids on four kinds of optimized hemicubes. The rows are: 1) unequal resolutions
on the top and side, 2) 2x2xh hemicube, 3) uneven quadratic spacing, 4) uneven cubic
spacing.

Fig. 14: Grid on hemicube making pixel form factors as equal as possible.
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Fig. 13: Grids on four kinds of optimized hemicubes. The rows are: 1) unequal resolutions
on the top and side, 2) 2x2xh hemicube, 3) uneven quadratic spacing, 4) uneven cubic
spacing.



Fig. 14: Grid on hemicube making pixel form factors as equal as possible.


